
AIAA 2001-4235

RE-ENGINEERING LEGACY MISSION SCIENTIFIC SOFTWARE*

Charles D. Norton
Jet Propulsion Laboratory

California Institute of Technology
MS 168-522,4800 Oak Grove Drive

Pasadena. CA 91109-8099 USA

Viktor K. Decyk
Department of Physics and Astronomy
University of California at Los Angeles

Los Angeles, CA 90095- 1547 USA
and

Jet Propulsion Laboratory
California Institute of Technology

High Performance Computing Systems & Applications Group
Center for Space Mission Information and Software Systems

ABSTRACT

Many mission-critical scientific applications often rely on a
legacy of software representing great intellectual and commer-
cial value. This software is generally well debugged, produces
trusted results, is actively meeting end-user goals, and pre-
serves (sometimes hidden) expert knowledge that cannot be
easily reproduced. Nevertheless, more ambitions mjssions re-
quire increased capabilities that impose new demands on soft-
ware. Should these legacy codes be abandoned and rewritten
from scratch, or can they be modernized to achieve new objec-
tives?

Our approach for modernizing legacy scientific software,
based on the new features of Fortran 90/95, will be presented.
The methodology adds new capabilities, and increased safety,
while promoting collaborative development and abstraction-
based design. Application of this technique to modernize the
Modeling and Analysis for Controlled Optical Systems soft-
ware (developed at JPL and important to NASA's Next Gen-
eration Space Telescope Project) will be described concluding
with new directions such as software tools for partial automa-
tion and evolution toward object-oriented concepts.

MODERNIZING SCIENTIFIC SOFTWARE

Legacy software has great value since it is generally well
debugged, produces results that are trusted, and is actively

*Copyright @ZOO1 by the American Institute of Aeronautics and Astro-
nautics, Inc. The U.S Government has a royalty-free license to exercise all
rights under the copyright claimed herein for Governmental purposes. All
other rights are reserved by the copyright owner.

meeting end-user goals. The amount of hidden expert knowl-
edge embedded in such software can be significant making
its preservation important.6 Nevertheless, legacy software has
limitations. It can be difficult to extend, modify, and it does not
support collaborative development very well. This can impede
the ability to meet new and expanded mission goals as time-
lines and budgets become tighter. One approach to this prob-
lem is to rewrite the software from scratch, but this may intro-
duce more serious costs. In particular, developing new verifica-
tion and validation tests can be expensive. Also, ensuring that
the legacy code was faithfully rewritten, regardless of the pro-
gramming language applied, cannot always be guaranteed.

Generally. if the functionality of the legacy software is
sound, it can be wrapped in a modem interface where the orig-
inal code is mostly unmodified. The idea of wrapping code
means that the original legacy software is preserved while a
new layer of software is introduced to separate the old software
from the new s0ftware.l The wrapper provides the best means
of retaining the functionality of the legacy software investment
while providing a more flexible context from which new soft-
ware, based on modem concepts, can be introduced. There are
many benefits to this approach.

1 . Software remains in productive use while applications are
modernized.

2. Avoids costly and potentially harmful software rewrites.

3. Promotes collaborative development while resolving or-
ganization problems exhibited in older codes.

4. Re-engineering occurs more quickly than rewriting, while
preserving verification and validation tests, especially

1
American Institute of Aeronautics and Astronautics

Figure 1. Legacy Software Modernization Process.

when the original programmers are involved.

5. Old bugs are uncovered that are often unknown accidents
waiting to happen

Extending the functionality of legacy systems has become
more important as modem applications increase in complexity
and require the interaction of multiple contributors.

The Technology Applied

We have found that Fortran 90195 has new features to sup-
port object-oriented principles beneficial for scientific pro-
gramming and introduce a design methodology that defines a
step-by-step process to modernize legacy application codes us-
ing state-of-the art software practices.”,” While we emphasize
Fortran applications, due to the abundance of Fortran legacy
codes, similar techniques can be applied to software written in
other domain-specific or general-purpose languages, including
C or C++.

Our process begins by upgrading the existing Fortran appli-
cation to standard conforming Fortran 90195. Next, interfaces
to the original application routines are introduced to add safety
features by detecting common programming errors. These in-
terfaces ensure that the wrapper layer, added next, always cor-
rectly calls the legacy code. This wrapper layer allows problem
based object abstractions to be introduced that interact cleanly
with the legacy code, while supporting new enhancements. It
also preserves the original, mostly unmodified, legacy soft-
ware. The user can communicate with the modernized code
across these layers and continuous development can occur si-
multaneously among these layers.

Many new features in the Fortran 90195 standard provide
benefits that are unfamiliar to experienced Fortran 77 software
engineers. These features add safety, simplify complex opera-
tions, and allow software to be organized in a logically related
way. Since backward compatibility is preserved one can incre-

mentally make modifications while preserving existing work.
Briefly, some of these new features are:

0 Modules: Encapsulates (groups together) data, routines,
and type declarations while providing accessibility across
program units.

0 Use-Association: Controls access to module content
across program units.

0 Interfaces: Verifies that the argument types in the proce-
dure call match the types in the procedure declaration.

0 Derived ’Qpes: User-defined types that support abstrac-
tions in programming. The creation of these types allows
one to support problem domain based design.

a Array Syntax: This syntax simplifies whole array, and ar-
ray subset, operations.

a Dynamics: Various kinds of dynamic structures are sup-
ported including allocatable arrays and pointers.

A very powerful realization is that combining these ideas al-
lows support for object-oriented concepts. There are a number
of textbooks on Fortran 90. One that we recommend is ”For-
tran 90 Programming”, by Ellis.&

LEGACY MODERNIZATION PROCESS

The following process has been successfully applied for
modernizing legacy software and it defines a plan of action for
such projects. The diagram in figure 1 shows the fundamen-
tal stages involved. While we focus on Fortran legacy codes
the same stages could be modified for software written in other
languages. Many of the specific actions taken will also depend
on the code structure and objectives.

2
American Institute of Aeronautics and Astronautics

Clearly Identify The Objectives

It is very important to have a conversation with the soft-
ware owners to determine their objectives. The flowchart of the
modernization process may help guide this discussion.

Understand The Legacy Software

Understanding, even at a basic level, how the legacy soft-
ware is organized is valuable. While it is possible to perform
the modernization without detailed knowledge of the applica-
tion, knowing the design is very helpful. Here are some com-
mon questions that should be asked.

1. Is this a stand-alone application or is additional software
required?

2. Is this a single language code or a multilanguage code?

3. What platforms are required?

4. Who is responsible for answering questions if legacy bugs
are detected?

5. What kind of obsolete features exist in the software?

6. Are any third-party developers involved and is their soft-
ware proprietary?

Addressing Undesirable Features

One of the most undesirable features of legacy Fortran 77
codes are COMMON blocks since they often inhibit more ad-
vanced features, like dynamic memory. They also discourage
code sharing since everything is exposed. For this reason, mod-
ifying large common blocks can also be intimidating since in-
advertent errors are easy to introduce. Other undesirable fea-
tures include implicitly declared variables, which are danger-
ous, and include statements that are platform dependent based
on how directories are specified.

Common blocks can be handled by placing the specification
in a Fortran 90/95 module. Furthermore, rather than using in-
clude to make a textual substitution, the module information
can become accessible using the Fortran 90195 use statement
in the appropriate routines.

The structure of the replacement is straightforward and is
shown in figure 2. One could have simply copied the original
common block from common.inc into a module exactly, but us-
ing the Fortran 90/95 constructs gives additional advantages.
These include the ability to make the block members dynamic
and the ability to add more functionality to the module by mak-
ing other modules visible within its scope, to name a few.

Creating Interfaces

Interfaces are very important, as they add safety to the mod-
ernized software. They allow the compiler to verify consistent

C Original COMMON Block in common.inc
real arg1(10,10), arg2(10,10)
logical arg3
logical arg4
COMMON /BLOCKl/ argl, arg2, arg3, arg4
SAVE /BLOCKl/

subroutine foo()
include 'common.inc'

end

! Modernized Version in comm0n.f
MODULE commonblockl

...

implicit none
save
real, dimension(10,lO) :: argl, arg2
logical :: arg3
integer :: arg4

END MODULE commonblockl

subroutine foo()
use commonblockl

end subroutine foo
...

Figure 2. Example of converting a common block to a
module.

argument usage for procedures, which allows subtle errors to
be detected and corrected in legacy codes.

Interfaces are created automatically for routines that are de-
fined within modules, but we are currently interested in build-
ing interfaces for the legacy routines that will not be moved
into modules at this time. Not every legacy routine requires an
interface, but all of the routines accessible from the main pro-
gram should have an interface. Furthermore, any routines in
the scope of the main program that have arguments that will be
dynamic will require an interface.

The interface statement is used to declare the procedure
name and the types of its arguments. Since this is a For-
tran 90/95 construct that will tie in the legacy code to the mod-
ernized code a new Fortran 90/95 interface.f file can be created
to declare the Fortran 77 legacy interfaces. These interfaces
can be placed in a module that in turn may use other modules,
such as the common block modules recently created.

Figure 3 shows how the interface has exactly the same dec-
laration as the original Fortran 77 legacy procedure; in fact it is
best to just copy it explicitly. This means that when the legacy
routine is called additional checks will be performed to ensure
that the number and types of the arguments match exactly.

It may look like very little has been gained, but the benefit of
the interface becomes clear when it is combined with a wrapper
that allows more powerful Fortran 90/95 features to be applied.

3
American Institute of Aeronautics and Astronautics

! Interface Module in interfacef
MODULE interfacemodule

USE common-block1
implicit none
save
interface

subroutine foofl7(argl, arg2, diml)
real argl(dim1, diml)
integer :: diml
logical :: arg2
end subroutine

end interface
END MODULE interfacemodule

Figure 3. Specifying an interface to a legacy Fortran 77
routine.

For example, many Fortran 77 programs have very long argu-
ment lists because extra information must be included, such as
the dimension of arrays. Since Fortran 90/95 arrays know their
size these arguments do not need to be included in a wrapper
function that calls the original legacy procedure, shown in fig-
ure 4.

! Interface Module in interface.f
MODULE interfacemodule

USE commonblockl
implicit none
save
interface

subroutine foof77(argl, arg2, diml)
real argl(dim1, diml)
integer :: diml
logical :: arg2
end subroutine

end interface

subroutine foof9O(argl, arg2)
real, dimension(:,:) :: argl
logical :: arg2

end subroutine foof90

CONTAINS

call fooflir(arg1, size(argl,l), arg2)

END MODULE interfacemodule

Figure 4. Creation of a wrapper to a legacy Fortran 77
routine where calls to the legacy procedure have been
simplified.

This is a simple example, but the effect can be significant for
very complex procedures. In fact, more functionality (such as
dynamic memory) can be applied at this level using the wrapper
while preserving the original legacy software. Furthermore,
this can be achieved without a serious performance penalty

when the legacy routine is non-trivial.
The interfaces can also clarify how Fortran 77 style ar-

guments are sometimes passed to procedures. For example,
it is not uncommon to find Fortran 77 programs that pass
a two-dimensional array to a procedure that expects a one-
dimensional array. This can cause compile errors when inter-
faces are used because they require that the arguments must
match exactly. In such instances it is possible to create multi-
ple interfaces to recognize this difference using a generic pro-
cedure to allow a single name to select the correct module pro-
cedure based on the argument list.

Adding New Capabilities

Now that the interfaces have been created and wrappers
have been introduced to encapsulate the legacy software new
capabilities can be added. For most legacy software the most
desirable feature is dynamic memory. Fortran 90/95 supports
many kinds of allocatable structures and they are straightfor-
ward to use. Dynamic memory increases the flexibility of the
software since this frees the application user from fixed prob-
lem sizes. Interoperability with more modern software can also
be achieved since the wrappers can be designed to utilize such
applications. These new capabilities can be added without af-
fecting the use of existing systems.

! Legacy Fortran 77 include of static COMMON data
parameter (mdttl=128)
integer nElt, RayID(mdttl,mdttl), ...
COMMON /EltInt/ nElt, RayID, . . .
SAVE /Elt.Int/

! New Module for COMMON data
MODULE elt-common

implicit none
save
integer :: nElt, mdttl = 128
integer, allocatable, dimension(:,:) :: RayID

CONTAINS
! Constructor

subroutine new-elt-common()
allocate(RayID(mdttl,mdttl))

end subroutine newxltxommon
END MODULE elt-common
! Dynamic allocation from main program
PROGRAM example

USE elt-common
implicit none
call new-elt-common

END PROGRAM example
...

Figure 5. Specifying an wrapper to a legacy Fortran 77
routine.

4
American Institute of Aeronautics and Astronautics

http://Elt.Int

The example in figure 5 shows a legacy Fortran 77 common
block with static data can be reorganized to support dynamic
memory. This occurs by moving the common block into a mod-
ule and specifying which structures will be dynamic. A con-
structor can be created to perform the allocation of the dynamic
structure and this constructor can be called from the main pro-
gram. A number of additional safety features such as checking
if the structure was already allocated, handling of exceptional
conditions like insufficient memory, and so forth can be added
as well.

Toward Components And Object-Oriented Design

Fortran 90/95 contains derived types, like structures in C,
which allow users to create their own types. This allows one
to program using designs that better represent the problem do-
main. One of the major benefits of the methodology is that
one can incrementally evolve the legacy code toward such a
design while preserving the functionality of the legacy soft-
ware. An object-oriented design allows the implementation
details to change without affecting the user. In a sense, the
interfaces and wrappers have hidden the details of the legacy
software, but we can enhance the wrappers to support derived
types evolving the code toward an object-oriented, component-
based, design. Considering object-oriented issues has received
libited attention in the past, but large applications have not been
empha~ized.”~

! Creating derived types for object-based design
type species

real, dimension(:,:), pointer :: coords
real, chargedomass, kineticznergy

end type species

! Using a legacy routine through an 00 wrapper
subroutine wpush(particles, force, dt)
type (species) :: particle
real :: dt, qbm, wke
integer :: ndim, nparticle, nx

ndim = size@article%coordinates, 2)
nx = size(force)
qbm = particle%charge_tomass
wke = particle%kinetic_energy
call push(particle%coords, force, qbm, wke, ndim

nparticle, nx, dt)
end subroutine wpush

Figure 6. An object-based wrapper to a legacy For-
tran 77 routine.

The example in figure 6 shows a legacy push (. . .) rou-
tine, wrapped by a Fortran 90/95 wpush (. . .) , routine that
uses a derived type to group together related information. This
was not possible in Fortran 77 so long complicated argument
lists were required. The species type has a dynamic com-

ponent, and other information, which simplifies the program-
mer’s view of the data. Nevertheless, the original legacy soft-
ware can still provide the functionality required.

In fact, a class can be created which groups together oper-
ations common to the new species type where the class mem-
ber routines utilize legacy software internally. New software
can be added to the class as well. This is a very powerful con-
cept, but careful planning is always required when building an
object-oriented design. This is illustrated in Figure 7.

! Creating classes for object-based design
MODULE plasma-class
! Create Derived Types.. .
CONTAINS

subroutine newspecies(...) ! Constructor ...
subroutine w-push(...) ! Class Members ...

END MODULE plasma-class

Figure 7. Creation of a class framework containing
wrappers and new routines.

Once the classes have been designed, and tested, the mod-
ules can be incorporated into the main program and calls to the
member routines can replace calls to the original legacy soft-
ware. Since interfaces for the legacy software still exist this
process can be incremental, the software still works at the end
of the day, and development can continue during the modern-
ization process allowing existing objectives to be satisfied.

MACOS CASE STUDY

The Modeling and Analysis for Controlled Optical Systems
(MACOS) software is an important NASA code that has been
used for numerous projects. This software, developed by Dr.
David Redding and others from the Optical Systems Model-
ing Group at JPL, provides powerful optical analysis tools and
a unique capability for system-level design and analysis tasks.
MACOS has many features, but a short list includes:

Y Modeling optics on dynamic structures, deformable op-
tics, and controlled optics

m Efficient general ray-trace capabilities

0 Integrated support with other tools to create an end-to-end
instrument system model

h4ACOS is written primarily in Fortran 77 and it interoper-
ates with Matlab, PGPlot, and FFTw. There is also a subroutine
library called SMACOS based on MACOS. Previous efforts to
rewrite the software completely in C++ (to meet new objec-
tives) were abandoned primarily because the new code did not
perform as desired, and the designers are more fluent in For-
tran.

The objectives of the designers were to achieve For-
tran 90/95 standard compliance, dynamic memory support, and

5
American Institute of Aeronautics and Astronautics

